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We have shown that any pair potential function v�r� possessing a Fourier transform V�k� that is positive and
has compact support at some finite wave number K yields classical disordered ground states for a broad density
range �R. D. Batten, F. H. Stillinger, and S. Torquato, J. Appl. Phys. 104, 033504 �2008��. By tuning a
constraint parameter � �defined in the text�, the ground states can traverse varying degrees of local order from
fully disordered to crystalline ground states. Here, we show that in two dimensions, the “k-space overlap
potential,” where V�k� is proportional to the intersection area between two disks of diameter K whose centers
are separated by k, yields anomalous low-temperature behavior, which we attribute to the topography of the
underlying energy landscape. At T=0, for the range of densities considered, we show that there is continuous
energy degeneracy among Bravais-lattice configurations. The shear elastic constant of ground-state Bravais-
lattice configurations vanishes. In the harmonic regime, a significant fraction of the normal modes for both
amorphous and Bravais-lattice ground states have vanishing frequencies, indicating the lack of an internal
restoring force. Using molecular-dynamics simulations, we observe negative thermal-expansion behavior at
low temperatures, where upon heating at constant pressure, the system goes through a density maximum. For
all temperatures, isothermal compression reduces the local structure of the system unlike typical single-
component systems.

DOI: 10.1103/PhysRevE.80.031105 PACS number�s�: 05.20.�y, 82.35.Jk, 82.70.Dd, 61.50.Ah

I. INTRODUCTION

Soft-matter systems including colloids, microemulsions,
and polymers are effectively modeled using simple soft pair
interactions �1�. A soft interaction pair potential v�r� is
bounded and absolutely integrable, and typically short-
ranged and repulsive �2�. Despite the simplicity of soft inter-
actions, they give rise to a plethora of fascinating physical
phenomena. For example, the Gaussian core potential, a
theoretically appropriate model for polymer interactions �3�,
shows re-entrant melting and novel solid-solid and solid-
fluid phase transitions �4–7� and exhibits negative thermal
expansion �NTE� �8� and counterintuitive higher-
dimensional behavior �9,10�. Other examples of soft interac-
tions include a penetrable-sphere model that produces local
clustering �11�, the quadratic potential as used in dissipative
particle dynamics �12�, and an ultrasoft logarithmically di-
vergent potential used as a model for star polymer solutions
�13�. Additionally, soft pair interactions are easier to treat
theoretically due to the finite energy at r=0 �2,14�. Duality
relations linking properties of lattices to those of their dual
lattices have been derived for the ground-state energies and
elastic constants of the Gaussian core model �15,16� and for
the ground-state energies of a general class of soft pair po-
tentials �2�.

Recently, a new class of soft pair potential functions has
been of interest because the minimum potential energy con-

figurations, or classical ground states, are disordered for a
broad range of densities �17–20�. This class of pair potential
functions includes any v�r� with a Fourier transform V�k�
that is positive, bounded, and has compact support at some
finite wave number K. For these V�k�, the corresponding v�r�
are generally long ranged and oscillatory. In previous work,
the structural order in ground-state configurations, from dis-
ordered to crystalline structures, has been characterized
�2,17–20�. More recently, this class of pair potential func-
tions was used to design disordered ground-state configura-
tions with targeted scattering characteristics �20� as part of a
broader program of inverse statistical mechanical methods
�see Ref. �21� and references therein�.

Considering the counterintuitive structure of the ground
states, we seek to explore the excited-state �T�0� properties
of such systems in two dimensions using the “k-space over-
lap potential” as our model potential, which is detailed in
Sec. II. For this potential, V�k� is proportional to the inter-
section area between two disks of diameter K whose centers
are separated by k �2�. It is also the Fourier-space analog of
a real-space “overlap” potential that arises in connection with
local-density fluctuations in point patterns �22�.

We intend to shed light on the underlying energy land-
scape that is responsible for classical disordered ground
states and certain ground-state and positive-temperature
properties. We focus our attention on two dimensions be-
cause it is computationally more efficient and easier to visu-
alize than three dimensions. However, for the more general
compact-support class of V�k�, anomalous ground-state be-
havior can be found in one, two, and three spatial dimen-
sions. For example, in one dimension, ground states undergo*Corresponding author. torquato@electron.princeton.edu
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an infinite number of “phase transitions” across the entire
density range as ground states switch between Bravais and
non-Bravais lattices �2,23�.

We have briefly outlined the salient components of this
study in a Letter �24�. In this paper, we not only expand on
this previous work but we also provide additional results
regarding the degeneracy of properties for ground-state lat-
tice structures, the equation of state, and structural changes at
positive temperature, as well as comprehensive discussion of
these unusual behaviors. Specifically, we use lattice sums to
show the continuous degeneracy of thermodynamic proper-
ties at T=0 for the family of rhombical Bravais lattices and
the effect on the shear moduli over the relevant density
range. Further, an analysis of normal modes provides an un-
derstanding the relative mechanical stability of lattice and
disordered structures in the harmonic regime. Lastly,
molecular-dynamics simulations are used to find the equation
of state and structural order for various pressures and posi-
tive temperatures. We find a number of unusual properties
including maximal Poisson’s ratio of unity, vanishing
normal-mode frequencies, and negative thermal expansion.
These anomalous properties are attributed to the nontrivial
topographic features of the energy landscape.

The remainder of this paper is as follows. In Sec. II, we
provide mathematical preliminaries and review some general
features of the ground-state properties, while the overlap po-
tential is introduced in Sec. III. The various methods utilized
in this study are found in Sec. IV. Section V details the
normal modes �i.e., harmonic behavior� for various densities.
The ground-state properties of lattice structures, with par-
ticular emphasis on the triangular lattice, are detailed in Sec.
VI. In Sec. VII, we examine the results of molecular-
dynamics simulations—the equation of state and thermody-
namic and structural characteristics at various temperatures
and pressures. Lastly, a discussion of these results, including
their connection to the energy landscape, is found in Sec.
VIII.

II. COLLECTIVE COORDINATES

A. Mathematical relations

For a system of N identical particles within a volume �
with positions ri that interact via pairwise additive potential
v�r�, the total potential energy is given by

� = �
i�j

v�rij� , �1�

where rij ��ri−r j�. Periodic boundary conditions and the
minimum image convention are employed here. A subset of
pair potential functions will now be identified for use in the
following which includes those v�r� that are bounded and
absolutely integrable such that their Fourier transforms V�k�
exist for all wave vectors k. The Fourier transform pair sat-
isfies

v�r� =
1

�
�
k

V�k�exp�− ik · r� , �2�

V�k� = �
�

v�r�exp�ik · r�dr , �3�

where the summation covers an infinite number of wave vec-
tors. In the infinite-volume limit, the pair potential function
and its Fourier transform are isotropic so that the relevant
variables for v�r� and V�k� are r��r� and k��k�, respec-
tively. The appropriate wave vectors for a region of space
with dimensions Lx�Ly have components

k = 	2�nx

Lx
,
2�ny

Ly

 . �4�

The N-particle system potential energy is equivalently repre-
sented by

� =
1

2�
�
k

V�k��	�k�	�− k� − N� �5�

=
1

�
�
k

V�k�C�k� , �6�

where the collective coordinates 	�k� are the Fourier coeffi-
cients of the density field and C�k� is a related real-valued
function

	�k� = �
j=1

N

exp�ik · r j� �7�

and

C�k� = �
i�j

cos�k · �r j − ri�� . �8�

The collective coordinates also convey structural information
through the structure factor S�k� and the pair distribution
function g2�r� via

S�k� =
��	�k��2�

N
, �9�

where �¯ � is the ensemble average and, omitting the k=0
wave vector,

S�k� = 1 + 	� exp�ik · r��g2�r� − 1�dr , �10�

where 	 is the number density N /�. Fan et al. �17� provided
additional basic identities and inequalities regarding 	�k� and
C�k�.

B. Ground states

By limiting the set of v�r� to those with V�k� that are
positive, bounded, and have compact support at wave num-
ber K, ground states can be constructed by numerical opti-
mization �17–20� and the ground-state properties are more
amenable to theoretical analysis �2,14,25�. Given that V�k� is
positive and that the minimum value of C�k� is −N /2, it is
clear that any configuration in which the C�k�’s are con-
strained to their minimum value for all 0� �k�
K is a
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ground-state configuration. We use Q to represent the set of
wave vectors centered spherically about the origin for which
0� �k�
K. By Eq. �6�, it is obvious that a ground-state con-
figuration �global minimum potential energy� is one in which

� =
V�0�C�0�

�
− 
 N

2�
� �

k�Q
V�k� �11�

if all C�k� for �k� in Q are simultaneously minimized. Note
that the k=0 wave vector contributes a structure-independent
constant to the potential energy.

For a fixed number density 	, K must be less than K� in
order to construct a ground state by numerical optimization,
where K� is at the first Bragg peak associated with certain
Bravais lattices. Sütő showed that these lattices are the inte-
ger, triangular, and body-centered cubic lattices in one, two,
and three dimensions, respectively, and he also provided the
relation between 	 and K� for which these lattices are unique
ground states �14�. With K�K�, any attempt to construct a
ground state will suppress the Bragg peak of the lattice and
in doing so, C�K�� and other C�k�’s cannot simultaneously
be minimized to −N /2. Thus Eq. �11� fails to hold and the
ground states for K�K� are unknown.

In describing these systems, it is often useful to refer to
the dimensionless parameter

� =
M�K�

dN
�12�

as the fraction of degrees of freedom that are constrained,
where M�K� is the number of independent wave vectors in

the set Q and dN is the total number of degrees of freedom
�18�. We have constructed ground states in one �17�, two
�18,20�, and three �19,20� dimensions via numerical optimi-
zation for various values of � ranging from 0 to ��. The
value of �� is dimension-dependent and corresponds to K�.
We limit our study to those systems for which K�K�,
equivalently ����. Since ��=0.91 in two dimensions, � is
approximately equal to the ratio of the area defined by Q
relative to the circular area of k space defined by K�, �i.e.,
��0.91�K /K��2�. This is illustrated in Fig. 1.

By varying � though all acceptable values, numerical op-
timization procedures identify distinct classes of structural
order. In one and two dimensions, three distinct classes of
ground-state structures arise. A disordered structure is one in
which constraining C�k� to be minimal for wave vectors in
Q does not implicitly minimize C�k� outside of Q. The sec-
ond class of structures, for d=2 defined as wavy crystalline,
comprises those ground states in which constraining C�k� to
be minimal for all k in Q implicitly minimizes some C�k�
for k outside of Q. In one dimension, this k-space structure
gives rise to a particular sequence in the spacing of minimal
and nonminimal C�k� �17�. In two dimensions, the wavy
r-space crystalline structure appears as a nonuniformly
sheared triangular or square lattice �18�. The distinction be-
tween disordered and wavy crystallines is a mathematical
definition concerning the C�k�’s and is not a physical phase
transition. In the third class, numerical optimization proce-
dures were only able to identify certain crystalline ground
states. For these last structures, all C�k� are minimized ex-
cept those associated with Bragg scattering �17,18�. In three
dimensions, disordered and crystalline regions were identi-
fied but no analogous wavy-crystalline region was found
�19�. Table I summarizes the approximate � values for tran-
sitions between structural regions at ground state.

When exploring the thermal properties of the overlap po-
tential, it is more natural to work with number density 	
instead of �, as the length scale 1 /K is fixed to unity. There
is an inverse relation between � and 	. As � goes to zero, the
density approaches infinity. Table II shows the relation be-
tween � and 	 with K=1 for ground-state regions and certain
Bravais and non-Bravais lattice structures in d=2. The lat-
tices are ground states for all � less than the associated maxi-
mal �. Note that the densities in the chart can be calculated
exactly for lattices with K=1 �14�. Since we deal with finite
systems, the distribution of the independent wave vectors can
produce some variation in �. Typically this variation is small.
For example, converting 	=0.0253 to � gives values of
0.7799 and 0.7667 for 418 and 780 particles, respectively. In
Table II, the � values were estimated using systems contain-
ing 418 particles.

TABLE I. Structural regions for various � and spatial dimension d.

d Ref. Disordered Wavy Crystalline Crystalline

1 �17� �

1
3

1
3 ���

1
2

1
2 
�
1

2 �18� ��0.57655 0.57655
��0.77990 0.77990
��0.91

3 �19� �
0.50066 No analog reported 0.50066���0.98133

k
x

k
y

|k|=K
*

|k|=K

��0.91(K/K
*
)
2

FIG. 1. �Color online� Structure factor for the triangular lattice.
The black dots indicate the location of the first Bragg peaks. The
constrained area of k space �shaded� cannot exceed the total area
enclosed by the dotted circle. The value of � is approximately
0.91�K /K*�2.
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III. OVERLAP POTENTIAL

The results reviewed above hold for any positive and
bounded V�k� that has compact support at K. This class of
V�k� generally produces a long-ranged v�r� with oscillatory
forces in the infinite-volume limit. We choose to probe the
phase behavior for a specific pair potential function. Initially,
a square-mound V�k� was considered due to its simplicity.
However, in the infinite-volume limit, the corresponding v�r�
is too long ranged and the pressure, as calculated by the
virial theorem, diverges for large particle separations. To di-
minish the range of v�r� and smooth out oscillations, we
sought a V�k� that went continuously to zero at K. Most V�k�,
including V�k�� �k−K�
 for positive 
 and truncation at K,
do not produce simple analytic expressions for v�r�. We ul-
timately chose the overlap potential since its v�r� is suffi-
ciently damped and analytic expressions exist for both V�k�
and v�r�.

The k-space overlap potential, previously introduced as a
real-space pair potential function that arises in connection to
local-density fluctuations in point patterns �22�, is propor-
tional to the intersection area between two disks of diameter
K whose centers are separated by k,

V�k� =
2V0

�
	cos−1
 k

K
� −

k

K

1 −

k2

K2�1/2
, k 
 K

�13�

and 0 otherwise, and in the infinite-volume limit, the pair
potential function in r space is

v�r� =
V0

�r2	J1
Kr

2
�
2

, �14�

where J1 is the first-order Bessel function. Figure 2 shows
the pair potential function and its Fourier transform with K
=1. The pair potential function v�r� is bounded at r=0 and
has small oscillatory features for large r. In the asymptotic
large-r limit, the real-space pair potential function goes as

v�r� �
4V0

K�2r3cos2
1

2
Kr −

3�

4
� . �15�

The first minimum in the v�r� occurs at 1
2Kr=3.8317 and

provides an effective diameter of D�=7.6634 /K for these
soft particles. For the rest of this paper, we will use dimen-

sionless variables with the natural length 1 /K, energy V0,
and particle mass m taken to be unity.

Soft potentials are often adequate models for polymer sys-
tems and given the oscillatory nature of the overlap potential,
it may be a reasonable model for special classes of polymers
or colloids �21�. In a recent study, the average depletion force
between two large colloids in semidilute polymer solutions
was shown, by application of integral equations and
molecular-dynamics simulations, to be oscillatory �26�.
Therefore, it may be possible for the overlap potential to be
an appropriate model for some colloidal systems although
we are currently unaware if any such physical system has yet
been examined experimentally.

In one dimension, it was shown that the ground states for
the corresponding rod-rod overlap potential, as well as the
Fourier transform of that overlap potential, undergo an infi-
nite number of “phase transitions” between Bravais and non-
Bravais lattices as the density is varied �2�. In two dimen-
sions, we find that these long-ranged interactions, similar in
form to Friedel oscillations in screened potentials of ions in
molten metals �27�, when applied to classical particles give
rise to other unusual ground-state and thermal properties.

The maximum attainable � in two dimensions is
��=0.91 and with K=1, this corresponds to a density of
	�=

�3
2�2��2 �2.19�10−2, the number density of the reciprocal

lattice of a close packing of disks in two dimensions. The
range in which Eq. �11� applies is for �
0.91 and equiva-
lently 	�	�.

IV. METHODS

A. Normal modes

Prior to this study, ground-state structures for 0
�
��

had been identified, but it was unknown whether these
ground states were mechanically stable to thermal fluctua-
tions. In the low-temperature limit, the potential energy is
expanded about a global minimum to second order with re-
spect to particle positions. The harmonic equations of motion
are constructed by using the expanded potential energy and
applying Newton’s second law. The solution to this set of
equations for a given configuration gives rise to the normal
modes of the system. The calculation of normal-mode fre-
quencies for disordered systems follows that of Brillouin’s
analysis of wave propagation in periodic structures �28�.
Since our systems possess periodic boundary conditions, the

TABLE II. Maximum � values as estimated from systems con-
taining 418 particles and the corresponding 	 for certain lattices and
structural transitions for K=1.

� 102	

Infinite density “ideal-gas” 0 �

Max. � for kagomé lattice 0.30 6.57

Max. � for honeycomb lattice 0.44 4.38

Disorder→wavy crystalline 0.58 3.46

Wavy crystalline→crystalline 0.78 2.53

Max. � for square lattice 0.78 2.53

Max. � for tri. lattice 0.91 2.19
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FIG. 2. �Color online� The pair potential function v�r� and its
Fourier transform, the overlap potential, V�k�.
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calculation of the dynamical matrix is equivalent to the cal-
culation of normal modes associated with infinite-
wavelength phonons. In this case, the dynamical matrix is
simply the Hessian of the potential energy with respect to
particle coordinates. The eigenvalues of the Hessian are the
square of the normal-mode frequencies and the eigenvectors
are the associated multidimensional directions of the modes.

If the frequencies of all modes are real and nonzero �i.e.,
the squares of the frequencies are positive�, the particles un-
dergo stable oscillations about their equilibrium position. If
any mode frequency is imaginary, the system is unstable and
is driven away from its initial state. However, if a mode
frequency vanishes, then the configuration can be perturbed
along the eigenvector direction without energy cost. For con-
figurations with a vanishing frequency, in the vicinity of a
global energy minimum, many directions in the energy land-
scape are uphill �the mode frequency is real and nonzero�,
but for other directions the energy landscape is flat �vanish-
ing normal-mode frequency�. A normal mode with a nonva-
nishing, real frequency actively contributes to the excess heat
capacity, however, a zero-frequency mode does not. When
heating a system, on average, the potential energy will re-
spond linearly with the temperature of the system via equi-
partition with a slope proportional to the fraction of frequen-
cies that are real and nonvanishing.

Consequently, we use the fraction of normal modes whose
frequencies are real and nonvanishing as a quantitative char-
acteristic of the energy landscape and a measure of the me-
chanical stability of a system. For a system under periodic
boundary conditions in two dimensions, two mode frequen-
cies will vanish corresponding to overall translation of the
system, while the remaining �2N−2� modes determine the
stability characteristics of the system.

B. Ground-state properties

In Sec. VI, we make use of lattice sums and basic ther-
modynamic relations to explore the potential energy, pres-
sure, isothermal compressibility, Poisson’s ratio, and elastic
constants. The pair potential v�r�, Eq. �14�, is utilized in the
lattice sums and is truncated at several thousand unit cells
from the origin so that finite-size effects are negligible.

The potential energy per particle for any Bravais lattice is

� = �/N =
1

2�
i

v��ri�� , �16�

where the summation is over all lattice sites ri, omitting the
particle at the origin. The pressure, at zero temperature, is

p = −
d�

da
= −

1

4a
�

i

�ri�v���ri�� , �17�

where a=	−1 is the area per particle. The isothermal com-
pressibility �T is related to the pressure via the expression

1

�T
= − a

dp

da
=

1

8a
�

i

��ri�2v���ri�� − �ri�v���ri��� . �18�

For an isotropic structure in two dimensions, the Poisson’s
ratio is given by

�tri =
2�xyxy − �xxyy

2�xyxy + �xxyy
, �19�

where �xyxy is the elastic constant for isotropic compression
and �xxyy is that for the uniform strain in one direction and a
subsequent uniform strain in the perpendicular direction
�29�. The elastic constants can be written in terms of the pair
potential function

�xyxy =
1

32a
�

i

��ri�2v���ri�� − �ri�v���ri��� , �20�

�xxyy =
1

4a
�

i
	
 xi

2yi
2

�ri�2
�v���ri�� + 
 �ri�

2
−

xi
2yi

2

�ri�3
�v���ri��
 ,

�21�

as was displayed previously �30�. Note that �xyxy is simply
1 /�T. The results of these calculations reveal much about the
crystalline ground-state regime and the continuous energy
degeneracy among lattice structures.

C. Molecular dynamics methods

Molecular dynamics methods were used to determine the
equilibrium structural and thermodynamic properties at posi-
tive temperature for the density range 	�	� �i.e., �
0.91�.
The potential energy and forces were calculated using Eq. �5�
as opposed to Eq. �6� since time-saving trigonometric iden-
tities can be employed. The equations of motion were inte-
grated using the velocity-Verlet algorithm �31� with a time
step of 0.4, chosen so that energy was accurately conserved
when integrating the equations of motion in the NVE en-
semble. Periodic boundary conditions were employed using
a square simulation box.

Constant density simulations were performed in the NVT
ensemble by employing an Andersen thermostat �32�. Sys-
tems contained either 418 or 780 particles and were initial-
ized in a triangular lattice, slightly strained to fit in the
square box �33�. When constructing the equation of state, the
systems of 418 particles were equilibrated for at least
200 000 time steps before sampling properties for an addi-
tional 200 000 time steps. Systems of 780 particles were
equilibrated for at least 50 000 time steps and properties
were averaged over an additional 30 000 time steps. In this
study, we observe no significant differences in the equilib-
rium properties at positive temperature between these modest
system sizes. Increasing the system size well beyond 780
particles is currently too computationally intensive consider-
ing the nature of the potential and the size scaling of Eq. �5�.
We also used molecular dynamics to estimate the fraction of
normal modes that have nonvanishing, real frequencies by
the slope of the equilibrium �−T curve in the low-
temperature region.

Constant pressure simulations were performed in the NPT
ensemble by using a scheme that couples molecular dynam-
ics with Monte Carlo volume sampling �34�. The equations
of motion were integrated as usual with the Andersen ther-
mostat. After each time step, a random, isotropic volume
move was attempted and accepted with the probability
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P��V� = min†1,exp„− ��� + p0�V

− NkT0 ln��V + �V�/V��/kT0…‡ , �22�

where p0 and T0 are the imposed pressure and temperature
and �� and �V are the differences between the trial move
and the original potential energy and volume. This method
was preferred over extended Lagrangian methods since this
does not require calculation of the virial at each time step.
The calculation of the internal virial requires explicit calcu-
lation of pair forces via Eqs. �6� and �8� and scales poorly
with the number of particles. Thus, in order simulate longer
times, it was best to avoid calculation of the virial at every
time step. The calculation of total forces on particles as re-
quired for integrating the equations of motion is simpler us-
ing Eq. �5� and suitable trigonometric identities. The systems
were initialized in the triangular lattice at 	=	� and the vol-
ume was rescaled, similar to that of the Berendsen barostat
�35�, so as to start the simulation near the target pressure. If
the pressure drifted significantly during the equilibration pe-
riod, the volume was rescaled until the pressure settled about
the target pressure.

Additionally, systems initialized in the triangular lattice
were slowly heated �at constant pressure or constant density�
and the resulting systems were then slowly cooled to nearly
zero temperature to observe hysteresis effects. It is important
to note that in the NVT ensemble, � is a fixed parameter and
in the NPT ensemble, � fluctuates, so that it is necessary to
adjust � after every accepted volume change.

V. RESULTS: NORMAL MODES

The parameter � originally was introduced to represent
the fraction of degrees of freedom that are constrained �18�.
Since the fraction of modes with nonzero, real frequencies is
indicative of the relative number of constrained degrees of
freedom, one might expect the fraction of normal modes
with nonvanishing, real frequencies to equal �.

For example, for a system with no imposed constraints,
�=0, all eigenvalues of the dynamic matrix are identically
zero since there are no interactions. For each constraint im-
posed upon the system �i.e., forcing C�k� to be minimal for
some k�, one might expect exactly one mode’s frequency to
switch from vanishing to nonzero and real while all others
remain zero if the constraints are independent. However, we
find that for ��0.5, constraining one independent wave vec-
tor k results in the switching of two frequencies from van-
ishing to nonzero and real. Figure 3 shows the fraction of
modes in which in the frequencies are vanishing as a func-
tion of �. The slope in the linear part is exactly −2. The
two-to-one relation comes about simply from the fact that
constraining C�k� to be minimal is equivalent to constraining
�	�k�� to be zero and consequently one requires that

�
i=1

N

sin�k · ri� = 0 �23�

and

�
i=1

N

cos�k · ri� = 0. �24�

These constraints are apparently independent for ��0.5. Im-
posing that C�k1� be minimal does not influence C�k2� pro-
vided that k1 is within the radial cutoff K associated with
�=0.5 and k2 is outside of K.

In the region 0.5��
0.78, for disordered and wavy-
crystalline structures, nearly all of the mode frequencies are
real and nonzero. For these calculations, several representa-
tive ground-state configurations were used and between
92%–98% of the frequencies were nonzero and real while all
others were zero. The square lattice and triangular lattice
have more vanishing frequencies than disordered ground
states for ��0.3. Lattice structures, surprisingly, have as
many as 12% more vanishing frequencies than nonlattice
structures when compared at the same �, implying that lat-
tices are mechanically less stable than their disordered coun-
terparts.

For the triangular lattice at its maximum attainable
�=0.91, exactly two mode frequencies vanish �for overall
translation in d=2�. Thus the only ground state is the trian-
gular lattice, a two-dimensional manifold in the energy land-
scape �aside from particle permutations�. By compressing the
system, effectively decreasing �, the energy landscape devel-
ops channels of depth equal to the global energy minimum
running through the triangular lattice. These channels are
evidenced by the vanishing normal-mode frequencies and
represent the presence of energetically degenerate configura-
tions. Upon further compression so that ��0.5, even disor-
dered ground states have many directions in the energy land-
scape that are absolutely flat. Continuous perturbations from
these points can take the system from one ground state to
another energetically degenerate ground state without energy
cost. We discuss the topography of the energy landscape fur-
ther in Sec. VIII.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
χ

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
m

od
es

w
ith

va
ni

sh
in

g
fr

eq
ue

nc
ie

s

Triangular Lattice Ground State
Square Lattice Ground State
Disordered Ground State

FIG. 3. �Color online� Fraction of normal modes with vanishing
frequency as a function of � for disordered and ordered structures
as calculated for N=780. The slope in the linear part is exactly −2.
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VI. RESULTS: MACROSCOPIC BEHAVIOR OF LATTICE
GROUND STATES

A. Lattice sums

Lattice sums were performed for the family of rhombical
Bravais lattices. Varying the angle between the lattice vectors
allowed for investigation of all rhombical lattices between
the triangular lattice and square lattice. This calculation con-
firms that the triangular lattice is indeed the ground state for
the largest density range, for 	�	�, as shown in Fig. 4�a�.

The square lattice is part of the degenerate ground state
for densities 	�2.53�10−2 ��
0.78�, which is also the
value that was previously identified as the transition between
wavy-crystalline and crystalline ground states. In light of
these observations, it may be possible to consider the wavy-
crystalline ground state as the manifestation of the union of
Bravais lattices described for this class of potentials �14�.
This coexistence of lattice configurations, as in the wavy-
crystalline and disordered regions, suggests that lattice struc-
tures are distinct global minima in the energy landscape that
are connected to each other via continuous paths of depth
equal to the global minimum potential energy.

Despite the existence of energy degenerate ground states
for � values in the crystalline region, numerical optimization
techniques consistently found only the triangular lattice and
no other lattice structures �18,20�. One might suggest that
system geometry would favor the triangular lattice, since N
was chosen to fit a triangular lattice in a square simulation
box, or that the initial condition, a perturbed triangular lat-
tice, biased the numerical optimization procedure. However,
when using, say, N−1 or N+1 particles with a random initial
condition, the system would attempt to form a triangular lat-
tice by aligning particles locally with perfect sixfold symme-
try but rotated uniformly to fit in the box and satisfy periodic
boundary conditions. The optimization almost always gets
trapped in a local energy minimum above the ground state
when using random initial configurations. The local-
minimum configuration usually resembled a triangular lattice
with vacancy or grain-boundary defects and never resembled
another lattice. Upon changing the simulation cell to a rhom-
bus, the minimization procedure similarly favored the trian-

gular lattice when �=0.91. At lower �, applying minimiza-
tion procedures to small, random perturbations from other
rhombical lattices would return the system to the perfect lat-
tice as a ground state. Further discussions of the energy land-
scape implications of this are relegated to Sec. VIII.

For the density range 	�	�, the ground states are not
known. However, the minimum-energy Bravais-lattice struc-
ture provides an upper bound on the ground-state energy via
appropriate duality relations �2� and on account of the non-
negativity of the pair potential function, �=0 is the lower
bound. We have found at least local energy-minimizing
structures whose energy falls within the bounds. These struc-
tures resemble a triangular lattice coexisting with a gas
�void� phase and are at positive pressure. However, without
application of Eq. �11�, we cannot determine if these are true
ground states and therefore this density region is not of rel-
evance to this work.

B. Pressure, isothermal compressibility, and Poisson’s ratio

Because the triangular lattice is unique among all disor-
dered and lattice ground states, we investigated its macro-
scopic behavior. The pressure-density curve, Fig. 4�b�, shows
a distinct cusp despite that fact that the pair potential is con-
tinuous. The isothermal compressibility-density curve �Fig.
5�a�� is also discontinuous at 	� despite the continuous po-
tential.

Each rhombical lattice has similar behavior due to the
subtle change in curvature at its respective critical density.
For 	�	�, the system becomes insensitive to the potential.
This notion was suggested in earlier work by considering the
energy of the dual lattice interacting with the dual potential
�14�. As the density goes to infinity, the isothermal compress-
ibility goes monotonically to zero. For some densities below
	�, the isothermal compressibility of the triangular lattice is
negative and thus this lattice is mechanically unstable for
those densities and can be ruled out as a potential ground
state. For a fundamental cell with a multiparticle basis, the
macroscopic behavior is similar to that of Bravais lattices,
however, the corresponding densities for the discontinuities
are much larger than those of rhombical Bravais lattices, as
seen in Table II.
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FIG. 4. �Color online� �a� Lattice sums and �b� pressure at T
=0 for the rhombical Bravais lattices with the overlap potential. The
triangular lattice is a ground state for 	�2.19�10−2, the square
lattice and wavy-crystalline structures are ground states for
	�2.52�10−2, and certain disordered structures are ground states
for 	�3.30�10−2.
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Because of the system’s insensitivity to the pair potential
function on the length scale of the particle at these densities,
the Poisson’s ratio for the triangular lattice �Fig. 5�b�� goes
identically to unity for the entire density range 	�	�. Nu-
merical error accounts for the small fluctuations about unity
in the figure. The elastic constants are similarly discontinu-
ous at 	�. As 	 approaches 	� from below, both the shear and
isotropic elastic constant diverge to infinity. Above 	�, the
shear elastic constant is identically zero and the isotropic
elastic constant grows monotonically. The triangular lattice
acts as an elastically incompressible material �i.e., on the
macroscopic scale, deformations of the triangular lattice are
volume preserving�. The shear modulus goes to zero and the
ratio of the shear to bulk modulus goes to infinity. These
unusual properties are a consequence of the system being
insensitive to the potential on these length scales.

VII. RESULTS: THERMAL BEHAVIOR

A. Equation of state and negative thermal expansion

The density equation of state, shown in Fig. 6, indicates
that upon heating this system at constant pressure, for
p�1.7�10−4, the density goes through a maximum. Lower
pressures were not considered since this caused � to exceed
0.91 in the ground state. The thermal-expansion coefficient,

� = −
1

	

 �	

�T
�

p

, �25�

is negative for low temperatures. NTE is a physical phenom-
enon that can occur as a result of several mechanisms. In
some cases, it arises due to an open, anisotropic crystalline
structure collapsing upon melting, as is the case with water,
and in other cases, the repulsive part of the pair potential
function is tuned to coerce a crystal to densify upon heating
�36�. However, the k-space overlap potential is isotropic and
has attractive and repulsive forces. The mechanism for NTE
in these systems shares some characteristics with that of the
Gaussian core model �GCM�. The GCM is a short-ranged,

soft-core pair potential that exhibits negative thermal expan-
sion for a range of temperatures and densities �8�. In that
model’s mechanism, increases in the density “smooth” out
the energy landscape in such a way that basins of attraction
at higher � flatten out faster upon compression than do ba-
sins of attraction at lower �. Upon compression, systems at
higher temperature do not increase potential energy as rap-
idly as systems at lower temperature, resulting in negative
thermal expansion. In contrast to the GCM, it is the long-
ranged and oscillatory nature of the k-space overlap potential
which contributes to such a shape variation of the energy
landscape.

NTE has a corresponding effect on the pressure equation
of state. At 	=	�, the pressure increases initially and then
has a discontinuous drop to a lower pressure. For densities
greater than 	�, the pressure drop occurred immediately and
smoothly decreased, achieving a minimum in the range
4�10−4
T
8�10−4. Due to the nonnegativity of the po-
tential, low-order virial coefficients are positive and the sys-
tem has no Boyle temperature. The virial equation of state
truncated after third order in Fig. 7�b� predicts the qualitative
decrease in pressure associated with negative thermal expan-
sion. Given the effective diameter of particles, the system is
at a relatively high density of soft particles and the virial
equation of state is not expected to be quantitatively accurate
in this density range

The potential energy always responds linearly with tem-
perature in the harmonic region, which is typically in the
range T�3�10−4 for these systems. The initial slope of the
potential energy-temperature curve for densities associated
with the crystalline ground states 	�
	
2.53�10−2 is
unity as shown in Fig. 8. This is evidence that all of the
normal modes �excepting those associated with overall trans-
lation� are actively contributing to the excess heat capacity.
In Sec. V, direct calculation of the normal-mode frequencies
indicated that the triangular lattice has several modes that do
not actively contribute to the excess heat capacity. Upon ad-
dition of some thermal energies, the triangular lattice gets
perturbed away from the lattice configuration in the energy
landscape to a nearby configuration in which nearly all
modes contribute to the excess heat capacity. Visual obser-
vation of the dynamics also reveals that the particles are not
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FIG. 6. �Color online� Density as function of temperature for
several fixed pressures for 418 particles initialized as a triangular
lattice and slowly heated. For p�1.7�10−4, the systems show
negative thermal expansion in the small-T region.
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necessarily oscillating about their initial lattice sites. For sys-
tems in which ��0.5, the initial slope of the �−T curve was
approximately 2� as expected from the direct calculations in
Sec. V. Also note from Fig. 8 that at all densities there is an
inflection point in the �−T curve indicating that the constant
volume heat capacity achieves a maximum.

Heating and cooling cycles at constant pressure or con-
stant density discover that hysteresis effects have strong den-
sity and pressure dependencies. For low pressures, these sys-
tems show a strong hysteresis effect that persists for
1.7�10−4
 p�3.3�10−4, but above this range the hyster-
esis effect disappears. Figure 9 shows the heating and cool-
ing cycle for a system of 418 particles. The temperature was
slowly increased in a stepwise fashion. The temperature was

set to a target value, the system was left to equilibrate for a
few thousand time steps, and then the temperature was in-
creased to a new set point. Each data point represents the
average value over a few hundred time steps at the respective
temperature set point. A similar dependence on the extent of
hysteresis exists for heating and cooling cycles at constant
density. The hysteresis effect is strongest at low densities and
eventually diminishes at higher densities. The lack of a hys-
teresis at high density and pressure suggests that the system
does not get trapped in local energy minima in the cooling
step.

B. Structural order

In the harmonic region at 	=	�, as T rises, particles os-
cillate about their lattice sites, a vacancy eventually appears,
and a particle jumps from site to site. At high enough tem-
perature, multiple vacancies build up and crystal melts to a
liquid state. This progression is shown in the top row of Fig.
10 for 	=	�. However, for higher density, the transition is
much less distinct. The middle and bottom rows of Fig. 10
show several snapshots of configurations for 	=2.35�10−2

and 2.86�10−2 as systems undergo the transition from
crystal to liquid. The middle row shows the system at
	=2.35�10−2, �=0.85, in the harmonic region, near the
melting point, and in the liquid state. The overall structure in
the harmonic region appears to have wavy crystallinity and
particles do not appear to oscillate about a lattice site. At the
same temperature for even higher density, 	=2.86�10−4,
first image in the bottom row, the configuration from the
harmonic region shows no memory of the initial lattice struc-
ture. There is clearly an excluded area around each particle
center. In the high-temperature limit, the liquid states are
disordered and visually similar to lower-density systems.

It is also interesting to note that in Fig. 10, there is no
local nucleation or aggregation during a transition from crys-
tal to disorder or during cooling. In some soft-matter sys-
tems, particles may cluster during cooling and form multi-
occupancy crystals �37�. Theoretical work suggests that the
overlap potential is insufficient to form multioccupancy crys-
tals in which some particles overlap with others to reduce the
total potential energy �38,39�. A density-functional approach
has also suggested this inability of the overlap potential to
produce multioccupancy crystals �40�. Here, we do not ob-
serve nucleation when cooled as the attractive forces are ap-
parently insufficient to promote local nuclei with six nearest
neighbors. The transition from liquid to a crystal appears to
be continuous as particles tend to “flow” into lattice sites.

We have also tracked changes in correlation functions
with temperature and pressure by averaging over equilibrium
molecular-dynamics trajectories. Figures 11 and 12 show the
structure factors and radial distribution functions at low and
high temperatures and several densities. With the relation
between the potential energy, V�k�, and the structure factor,
given in Sec. II, we can justify the shape of the structure
factor at positive temperature. At the ground state, S�k� is
forced to zero for all �k��K. We observe that thermal energy
is distributed according the weights upon which V�k� “as-
signs” each C�k� �and thus S�k� for wave vectors �k��K�.
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FIG. 9. �Color online� Hysteresis loops for a heating and cooling
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Given that V�k� is monotonically decreasing to zero at K,
V�k� assigns the least weight to large k and this is where we
observe the most significant response in S�k� with the appli-
cation of thermal energy. Increases in the density smear out
the S�k� oscillations for k outside of the constraint radius K.

Upon the addition of thermal energy, the radial distribu-
tion function g2�r� smoothes out and at high-enough tem-

perature, the particles are no longer surrounded by an effec-
tive hard core. For large r, there are oscillations in g2�r� with
wavelengths of 2� that arise from the long-ranged oscilla-
tions of the pair potential function v�r�. Upon isothermal
compression, neighbor peaks are smoothed out. These phe-
nomena are strictly a characteristic of soft potential systems,
as hard-core systems become locally more ordered with in-
creasing density whereas soft-core particles experience in-
creasing particle overlap.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10. �Color online� Snap-
shots of configurations. �Top row�
	=2.20�10−2 ��=0.91�, from
left to right: T�103=0.1, 0.7, and
1.0. �Middle row� 	=2.35�10−2

��=0.85�, from left to right:
T�103=0.1, 0.7, and 1.0.
�Bottom row� 	=2.86�10−4

��=0.70�, from left to right:
T�103=0.1, 0.4, and 1.0. There
is a lack of local nucleation and
the transition from crystal to dis-
order appears to be first order only
for 	=2.20�10−2. Otherwise, the
transition appears continuous. Par-
ticle sizes are chosen for clarity of
the structure and are not reflective
of the soft-core diameter.
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FIG. 11. �Color online� S�k� for systems at T=7�10−5 �left� and
4�10−3 �right� and 	�102=2.20, 2.50, 3.31, 4.00, and 5.09
�equivalently, �=0.90, 0.79, 0.60, 0.50, and 0.40�, averaged over
many time steps for a system containing 418 particles. S�k� for
	=2.20�10−2 is truncated just past at k=2. It does not
approach unity at k=2. Data were not collected for these k
at 	=2.20�10−2.

0 5 10 15 20 25 30
r

0

2

4

6

8

10

g 2(r
) Increasing ρ

T = 0.00007

0 5 10 15 20 25 30
r

0

0.5

1

1.5

2

g 2(r
)

Increasing ρ

T = 0.004

(a) (b)

FIG. 12. �Color online� g2�r� �right� for systems at T=7�10−5

�left� and 4�10−3 �right� at 	�102=2.20, 2.50, 3.31, 4.00, and
5.09 �equivalently, �=0.90, 0.79, 0.60, 0.50, and 0.40�, averaged
over many time steps for a system containing 418 particles. In-
creases in density smooth out local order.
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At low temperature and low density, Bragg scattering re-
mains as observed in Fig. 11. Since Bragg scattering is evi-
dence of long-ranged order, we have used this as a criterion
to construct a structural phase diagram for the overlap poten-
tial. Figure 13 shows the density-temperature phase diagram.
We define “ordered” states as those in which the first maxi-
mum of S�k� is greater than 3. This is chosen so as to include
the ground-state wavy crystal as an ordered state due to the
perfect local coordination with slight harmonic distortion and
effective hard core. As the density is increased, the tempera-
ture at which the Bragg scattering is destroyed sharply ap-
proaches zero. Densification of the system reduces the barri-
ers in the energy landscape around the triangular lattice point
so that only a small amount of thermal energy is required to
destroy long-ranged order.

We have used the bond-orientational order parameter �6,
defined as

�6 = � 1

Nbonds
�

j
�

k

e6i�jk� , �26�

where � jk is the angle between two particles with respect to a
fixed, but arbitrary, coordinate axis, to quantify the local
hexatic order. The bond-orientational order parameter is an
order metric where unity represents a perfect triangular lat-
tice and zero represents no local hexatic order. An underlying
triangular lattice is evident for 0.5��6
1 where within the
lower part of this range, the lattice is distorted by defects and
fluctuations from the lattice sites. For a wavy-crystalline
structure, �6 can range from about 0.4 to 0.8.

Figure 14 shows instantaneous values of �6 for various
pressures upon slow heating. At the lowest pressure, p=1.7
�10−4, the bond order parameter gradually decreases and
then shows a distinct drop at T=7.5�10−4, signifying the

loss of local order. This distinct drop also corresponds to the
jump in density at this pressure. At higher pressures, the drop
in the bond order parameter is less dramatic and has a more
gradual decrease toward zero. At sufficiently high tempera-
ture, the order parameter drops and fluctuates below 0.1.
Longer, near-equilibrium simulations for fixed NpT occa-
sionally showed large fluctuations in the order parameter for
3.0�10−4�T�6.0�10−4 despite other state variables ap-
pearing well equilibrated, but generally showed significantly
diminished local order. For p�2.3�10−4, the equilibrium
values show a distinct jump from high values to low values
whereas at higher pressures they generally did not.

Due to the sharp discontinuities associated with state vari-
ables at 	=	� or the pressure p� associated with 	� at zero
temperature, the phase transition appears to be first order. For
all densities greater than 	� or pressures above p�, there is
not necessarily a distinct jump in the thermodynamic quan-
tities as the system transforms from crystalline to disordered.
System size effects may be responsible for apparent lack of
discontinuities for 	�	� or p� p�. However, given the de-
generacy of ground states at all densities greater than 	�, it is
likely that the phase transition is continuous for these densi-
ties. However, we have not fully investigated the nature of
the phase transition since this is beyond the focus of the
present work.

VIII. DISCUSSION

Systems of particles interacting via the overlap potential
exhibit anomalous properties for densities greater than 	�. At
the ground state, these systems exhibit energy degeneracy
among Bravais-lattice structures and increases to the density
bring about additional degeneracies with wavy-crystalline
and disordered structures. For the triangular lattice, the Pois-
son’s ratio is identically unity and the shear modulus is iden-
tically zero. The nature of the potential allows for volume-
preserving shear deformations to be made at zero
temperature without energy cost. At temperatures where the
harmonic approximation is valid, ground-state configurations
have vanishing normal-mode frequencies. The fraction of
vanishing frequencies increases with density and has a
simple relation to � for ��0.5. At positive temperature,
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FIG. 14. �Color online� Instantaneous bond-orientational order
parameter for various pressures for a system containing 418 par-
ticles heated at a linear rate of 7�10−8 temperature units per unit
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these systems exhibit negative thermal expansion. When
heated at constant density, the pressure attains a minimum
and when heated at constant pressure, the system attains a
density maximum.

These results are attributed to features of the energy land-
scape. At a density equal to 	�, the only global minima in the
energy landscape are associated with the triangular lattice
and its particle permutations. Upon compressing the system,
additional global minima appear as “channels” running
through the triangular lattice point. Further compression of
the systems into the wavy-crystalline regime yields a signifi-
cantly higher number of intersecting channels. Points in the
energy landscape associated with Bravais lattices have a
higher number of intersecting channels running through them
than do amorphous ground-state configurations. This trend
continues as the system is compressed further into the disor-
dered region.

We have constructed a schematic of a projection of the
energy landscape in Fig. 15. Diamonds represent initial con-
ditions for steepest-descent trajectories for minimizing � and
the arrows represent the trajectories down the energy land-
scape. The dark lines represent the ground-state manifolds
intersecting at the central point associated with the triangular
lattice. Crosses represent local minima that are higher in the
energy landscape.

For the crystalline region, 0.78
��0.91, the energy
landscape must be shaped in such a way to favor the trian-
gular lattice over all other ground-state structures by nature
of the relative size of the capture basin. The capture basin for
a ground-state structure is the region of configurational space
for which quenchings of the potential energy function by
steepest-decent trajectories return to a specific structure �41�.
In the crystalline region, the overall symmetry of the trian-
gular lattice must be reflected in the topography of the en-
ergy landscape so as to give the triangular lattice the largest
capture basin while other possible ground-state structures
must have relatively much smaller capture basins. When us-
ing a perturbed triangular lattice as the initial condition for a
minimization of the potential energy, the resulting configu-
ration is either the triangular lattice or a local minimum of
higher energy in the vicinity of the triangular lattice. These
latter structures appear to be a triangular lattice with a va-
cancy or grain-boundary defect. Local minima typically arise

when each particle is randomly perturbed by about 5% or
more of the lattice spacing from its original site. Despite the
existence of other Bravais-lattice configurations as ground
states, the minimization routine has never found one. One
must use infinitesimal perturbations from these Bravais lat-
tices in order for the minimization routine to yield the
ground state. In general, most random initial conditions lie
within capture basins for local minima. This situation is
shown schematically in Fig. 15�a� as configurations local to
the triangular lattice point fall to the lattice point and all
others result in local minima.

In the wavy-crystalline region, 0.58
��0.78. In Fig.
15�b�, the nature of the capture basins changes significantly.
Random configurations used as initial conditions for minimi-
zations of the potential energy occasionally result in ground
states, although usually they result in higher-energy local
minima. In our experience, random initial conditions in this
� range have never resulted in a perfect triangular lattice
ground state. Using a perturbed triangular lattice as an initial
condition, random perturbations of each particle from its lat-
tice site of less than 2% of the lattice spacing are large
enough for the numerical minimization to find wavy-
crystalline ground states. In general for this � region, the
capture basins for wavy-crystalline ground states dominate
configurational space, even in the local vicinity of the trian-
gular lattice point.

Upon further compression of the system into the disor-
dered region, ��0.58, disordered structures dominate the
ground state manifold and the capture basins of Bravais-
lattice structures are points of very small measure. Minimi-
zation of the potential energy does not result in the triangular
lattice except for very small perturbations about the lattice
point. More specifically, for ��0.5, our minimization rou-
tine has not encountered a local minimum. With the energy
landscape devoid of local minima for these �, the ground
state is the only outcome from steepest-descent trajectories.

A close look at these results, particularly the hysteresis
studies via molecular dynamics, provides an interesting ob-
servation into the notion of glasses. Glasses are mechanically
rigid, amorphous systems that have been rapidly quenched
and as a result, the systems are kinetically trapped in local
energy minima. Typically, glasses are metastable with re-
spect to crystalline ground states. However, in the wavy-
crystalline and disordered regions at zero temperature, most
ground states are amorphous and all ground states tested
above 	�, including the triangular lattice, are not mechani-
cally rigid. There are vanishing normal-mode frequencies
and the shear elastic constant is zero indicating a lack of
internal restoring force. With the overlap potential, one won-
ders whether true glasses can be constructed upon rapid cool-
ing considering that ground states are not mechanically rigid.
In order to do so, the energy landscape must contain local
energy minima above the ground-state energy without van-
ishing mode frequencies �aside from overall translation�. To
this point, rapid cooling of a system for certain densities
produced hysteresis as T goes to zero, similar to that of Fig.
9 but done at constant density. The system is evidently stuck
in a local energy minimum above the ground state. The ex-
tent of the hysteresis effect is dependent on � and for
��0.5, the hysteresis effect disappears. From our experience

(a) (b) (c)

FIG. 15. Schematics of the energy landscape for �a� crystalline
region 0.78
��0.91 �0.0219
	
0.0253�, �b� wavy-crystalline
region and part of the disordered region, 0.50
��0.78
�0.0253�	
0.0401�, and �c� disordered region, ��0.5
�	�0.0401�. When minimizing the potential energy, initial configu-
rations marked by the diamonds can fall by steepest-descent trajec-
tories to the triangular lattice �center point�, amorphous ground
states �dark lines�, or to local energy minima above the ground state
�crosses�. The heavy lines represent the ground-state manifolds run-
ning through the triangular lattice point.
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with the numerical optimizations �17–20�, the energy land-
scape likely does not contain local minima for ��0.5 as
minimizations of the potential energy have always yielded
ground states for these �. Presumably the constraints on the
C�k�’s are not sufficient in number to provide trapping in a
local energy minimum. Future work will entail investigating
this paradoxical phenomenon of producing rigid glasses with
respect to nonrigid ground states. Additionally, given the lack
of internal restoring forces in the ground state, a close ex-
amination of dynamic properties, including self-diffusion
and shear viscosity, may uncover unusual transport proper-
ties.

By way of duality relations for classical ground states �2�,
there are direct connections between the ground-state ener-
gies of the overlap V�k� and a real-space overlap v�r� that
has compact support at r=1. At the densities of interest, sys-
tems interacting via the overlap V�k� are insensitive to the
potential function much like systems interacting via a square
mound v�r� are insensitive to the potential function at low
densities. However, the following distinction between the re-
spective energy landscapes has to be made. For a square
mound v�r� or hard disks at low densities, the ground states
are disordered and the corresponding portion of the energy
landscape is a flat manifold walled in by positive energy or
even forbidden configurations �overlapping disks�. However,
for the overlap V�k�, the energy landscape is a continuous
hypersurface with many energetically degenerate manifolds
sweeping throughout.

It is important to point out that the results in Sec. V hold
for any potential whose V�k� is bounded, positive, and has
compact support at K for d=2. Since V�k� is independent of
structure, C�k� is the only relevant quantity. Since these V�k�

share the same ground states for 	�2.19�10−2, they also
share the same C�k�. For a given �, the fractions of modes
with nonzero, real frequencies are identical for all V�k� in
this class. Additionally, because of the nature of the potential,
similar macroscopic behavior should be expected. However,
it is unclear whether the phase behavior of systems interact-
ing via the overlap potential is similar to that of other V�k� in
the same general class. For instance, it is not known whether
a linear ramp V�k� would produce negative thermal expan-
sion. Perhaps the form of V�k� is amenable to a more math-
ematical analysis in determining positive-temperature phase
behavior, but this approach has yet to be taken.

Lastly, the linear relation between the fraction of modes
with nonzero, real frequencies and � holds for ��0.5 for
systems in dimensions one and three. Future work investigat-
ing the phase behavior of these spatial dimensions may un-
cover unusual behavior. Even in the first spatial dimension,
an infinite number of ground-state “phase transitions” has
been identified �2� but the thermal properties have yet to be
explored. The nature of this class of soft, bounded potentials
has been relatively unexplored, yet as we have shown here,
the low-temperature behavior can be quite surprising.
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